Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRIS Cnrarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IRIS Cnr
Article . 2020
License: CC BY NC ND
Data sources: IRIS Cnr
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Energy Research
Article . 2020 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CNR ExploRA
Article . 2020
Data sources: CNR ExploRA
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Coupling a Stirling engine with a fluidized bed combustor for biomass

Authors: Francesco Saverio Marra; Francesco Miccio; Roberto Solimene; Riccardo Chirone; Massimo Urciuolo; Michele Miccio;

Coupling a Stirling engine with a fluidized bed combustor for biomass

Abstract

The paper deals with the integration between a kinematic Stirling engine and a fluidized bed combustor for micro-scale cogeneration of renewable energy. A pilot-scale facility integrating a 40 kW(t)combustor and a gamma-type Stirling engine (0.5 kW(e)) was set up and tested to demonstrate the feasibility of this solution. The Stirling engine was installed at a lateral wall of the combustor in direct contact with the fluidized bed region. An experimental campaign was executed to assess the performance of the innovative integrated system. The experimental results can be summarized in: (a) very high combustion efficiency with biomass feeding, (b) elevated heat transfer rate to the engine, (c) a relatively small share (about 2 kW(t)) transferred to the engine from the thermal power generated by the combustor (around 13 kW(t)), (d) conversion to electric power close to the upper limit of the engine, (e) limited impact of the Stirling engine on the fluidized bed behavior, for example, temperature. From the analysis of measured variables, the dynamics is dominated by the fast response of the Stirling engine, which rapidly reacts to the slow changes of the fluidized bed combustor regime: the dynamic response of the tested facility as a thermal system was slow, the time constant being of the order of 10 minutes.

Country
Italy
Keywords

biomass, Renewable Energy, Sustainability and the Environment, mathematical modeling, Energy Engineering and Power Technology, micro-generation, Energy Research, biomass fluidized bed combustion mathematical modeling micro-generation Stirling engine system dynamics renewable energy; Integrated systems; micro-generation, Fuel Technology, Nuclear Energy and Engineering, fluidized bed combustion, system dynamics, Stirling engine

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
Green
gold