Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Energy Research
Article . 2020 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Machine learning‐based model for lithium‐ion batteries in BMS of electric/hybrid electric aircraft

Authors: Seyed Reza Hashemi; Afsoon Bahadoran Baghbadorani; Roja Esmaeeli; Ajay Mahajan; Siamak Farhad;

Machine learning‐based model for lithium‐ion batteries in BMS of electric/hybrid electric aircraft

Abstract

SummaryReliable operation and control of battery packs can lead to increasing applications of batteries as energy sources for mobile power systems such as electric/hybrid electric aircraft. If the operation of a battery pack is controlled and monitored thoroughly, the safety in the battery system of an electrified aircraft can be guaranteed. The battery model has many applications in battery management systems such as battery performance analysis and fault detection. To achieve an accurate fault diagnosis for electric aircraft, an intelligent fault detection scheme within an accurate battery cell model is required. In this study, an adaptive lithium‐ion battery model is proposed in which models' parameters are estimated by a supervised machine learning paradigm. This adaptive battery model is developed based on a second order equivalent circuit model, which has a good representation of lithium‐ion batteries dynamics. Comparative verification experiments show good accuracy and robustness of the machine learning‐based parameter estimator lead to an accurate battery model with an average error less than 0.4%. Moreover, to see the effectiveness of this machine learning‐based model in fault detection applications, a model‐based fault diagnosis scheme is developed. Finally, the analysis of fault diagnosis tests under different test conditions proves that the proposed adaptive battery model can significantly improve the fault diagnosis accuracy of batteries.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Top 10%
gold