
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Optimal energy management strategy for a renewable‐based microgrid considering sizing of battery energy storage with control policies

doi: 10.1002/er.6198
SummaryMicrogrids (MGs) are known as suitable options to accommodatethe high penetration of renewable energies, like solar and wind. MGs have provided the requirements of controlling and adjusting these sources. In addition, batteries are becoming indispensable components of MGs because of their capabilities in addressing the renewable energies' power output intermittency. In MGs, the problem of smart energymanagement along with battery sizing has been introduced as the necessity to ensure the efficient use of renewable sources and decrease traditional fossil‐fuel‐based generation technology penetration level in power systems. Accordingly, a novel method is presented in this paper to effectively address the above‐mentioned requirements, utilizing the modified shuffled frog leaping algorithm (MSFLA), applied to different case studies. The results, obtained from the numerical simulation, are compared to several well‐established optimization approaches to verify the performance of MSFLA. In terms of computational efficiency and quality of the obtained solution, the MSFLA has demonstrated promising outcomes, together with superior performance in comparison with other algorithms. The results show that the presented framework, including the battery sizing, would be very beneficial to minimize the operating cost of MGs.
- An Giang University Viet Nam
- Salman bin Abdulaziz University Saudi Arabia
- Griffith University Australia
- Griffith University Australia
- University of Da Nang Viet Nam
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).43 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
