Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Energy Research
Article . 2020 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimal energy management strategy for a renewable‐based microgrid considering sizing of battery energy storage with control policies

Authors: Ziad M. Ali; Ziad M. Ali; Nguyen Vu Quynh; Kengo Suzuki; Mohammed M. Alhaider; Alireza Rezvani;

Optimal energy management strategy for a renewable‐based microgrid considering sizing of battery energy storage with control policies

Abstract

SummaryMicrogrids (MGs) are known as suitable options to accommodatethe high penetration of renewable energies, like solar and wind. MGs have provided the requirements of controlling and adjusting these sources. In addition, batteries are becoming indispensable components of MGs because of their capabilities in addressing the renewable energies' power output intermittency. In MGs, the problem of smart energymanagement along with battery sizing has been introduced as the necessity to ensure the efficient use of renewable sources and decrease traditional fossil‐fuel‐based generation technology penetration level in power systems. Accordingly, a novel method is presented in this paper to effectively address the above‐mentioned requirements, utilizing the modified shuffled frog leaping algorithm (MSFLA), applied to different case studies. The results, obtained from the numerical simulation, are compared to several well‐established optimization approaches to verify the performance of MSFLA. In terms of computational efficiency and quality of the obtained solution, the MSFLA has demonstrated promising outcomes, together with superior performance in comparison with other algorithms. The results show that the presented framework, including the battery sizing, would be very beneficial to minimize the operating cost of MGs.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    43
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
43
Top 1%
Top 10%
Top 1%
gold