Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Science &...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Science & Engineering
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Science & Engineering
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Science & Engineering
Article . 2021
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Techno‐economic comparison of amine regeneration process with heat‐stable amine salt reclaiming units

Authors: Jesung Lee; Jesung Lee; Hyungtae Cho; Jonghun Lim; Jonghun Lim; Il Moon; Junghwan Kim;

Techno‐economic comparison of amine regeneration process with heat‐stable amine salt reclaiming units

Abstract

AbstractMost factories employ an amine gas sweetening process to remove sulfur compounds. During this process, heat‐stable amine salt (HSAS) is generated, which reduces process efficiency. Ion exchange resin and electrodialysis reclamation methods are employed for HSAS removal. However, the equipment cost, electricity, water, and raw material consumption of each unit vary according to the amount of HSAS reclaimed; thus, it is necessary to consider the cost. In this study, we compared the techno‐economic aspects of the amine regeneration process for individual HSAS reclaiming units, developed process models to predict operation costs, and verified our simulation results by comparing actual operation and design data. The proposed mathematical models can be employed to calculate various costs incurred during amine regeneration with HSAS reclaiming units. The economic crossover point is derived at 36.6111 kg‐mol/d by utilizing the models. This enables economically feasible units to be identified based on the amount of HSAS reclaimed.

Related Organizations
Keywords

electrodialysis reclaiming unit, Technology, T, Science, Q, amine regeneration process, economic crossover point, ion exchange resin reclaiming unit, optimization

Powered by OpenAIRE graph
Found an issue? Give us feedback