
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Effect of the staggered impeller on reducing unsteady pressure pulsations of a centrifugal pump

Effect of the staggered impeller on reducing unsteady pressure pulsations of a centrifugal pump
AbstractThe emitted noise and vibration induced by the unsteady flow of the centrifugal pump are always focused during its running, which is also associated with the high amplitude pressure pulsations. How to reduce pressure pulsations remains a crucial problem for the researcher considering low noise design of the centrifugal pump. In the current research, a special staggered impeller is proposed to reduce intense pressure pulsations of a centrifugal pump with ns = 69 based on alleviating rotor‐stator interaction. The numerical simulation method is conducted to illustrate the influence of staggered impeller on the pump performance and pressure pulsations, and three typical flow rates (0.8ФN–1.2ФN) are simulated. Results show that the staggered impeller will lead to the pump head increasing, and at the design working condition, the increment reaches about 3% compared with the original impeller. Meanwhile, the pump efficiency is little affected by the staggered impeller, which is almost identical with the original impeller. From comparison of pressure spectra at 20 monitoring points around the impeller outlet, it is validated that the staggered impeller contributes significantly to decreasing pressure pulsations at the concerned working conditions. At the blade passing frequency, the averaged reduction of 20 points reaches 89% by using the staggered impeller at 1.0ФN. The reduction reaches to 90%, 80% at 0.8ФN, 1.2ФN, respectively. Caused by the rib within the staggered impeller, the internal flow field in the blade channel will be affected. Finally, it is concluded that the proposed staggered impeller surely has a significant effect on alleviating intense pressure pulsation of the model pump and does not obviously alter the global performance of the pump, which is very promising during the low noise pump design considering its feasibility for manufacturing.
- Jiangsu University China (People's Republic of)
- Jiangsu University China (People's Republic of)
Technology, T, Science, Q, reduction of pressure pulsation, centrifugal pump, staggered impeller, numerical simulation
Technology, T, Science, Q, reduction of pressure pulsation, centrifugal pump, staggered impeller, numerical simulation
1 Research products, page 1 of 1
- 2005IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
