
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Parameter identification and identifiability analysis of lithium‐ion batteries

doi: 10.1002/ese3.1039
AbstractParameter identification (PI) is a cost‐effective approach for estimating the parameters of an electrochemical model for lithium‐ion batteries (LIBs). However, it requires identifiability analysis (IA) of model parameters because identifiable parameters vary with reference data and electrochemical models. Therefore, we propose a PI and IA (PIIA) framework for a robust PI that can adapt to discharge data. The IA results show that the best subset with 15 parameters is determined by the Fisher information matrix and the sample‐averaged RDE criterion under various operating conditions. The identification process based on a genetic algorithm determines the optimal parameters. The identified‐parameter model predicts voltage curves with uncertainty bounds, considering the confidence intervals of identified parameters. Further, we demonstrate that the proposed PIIA framework robustly identifies the parameters of the electrochemical model from experimental data.
- Yonsei University Korea (Republic of)
- Yonsei University Korea (Republic of)
Technology, T, Science, Fisher information matrix, Q, identifiability analysis, parameter identification, genetic algorithm, lithium‐ion battery
Technology, T, Science, Fisher information matrix, Q, identifiability analysis, parameter identification, genetic algorithm, lithium‐ion battery
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
