Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Science &...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Science & Engineering
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Science & Engineering
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Study on the production law and optimization parameters of CO2 huff ‘n’ puff for continental shale oil

Authors: Chunmiao Ma; Fengqi Tan; Ninghong Jia; Jianhua Qin; Xiankun Li; Yuqian Jing; Ruihai Jiang;

Study on the production law and optimization parameters of CO2 huff ‘n’ puff for continental shale oil

Abstract

AbstractIn this study, nuclear magnetic resonance and computed tomography scanning were used to analyze the production law and displacement mechanism of Jimusaer continental shale oil during CO2 huff ‘n’ puff, and the optimal parameters were determined. The results indicated that CO2 huff ‘n’ puff mainly produces crude oil in pore throats with 0.1–1 μm radii, while crude oil in pore throats with radii below 0.1 μm cannot be produced. Multiple CO2 huff ‘n’ puff cycles can connect fluids in fractures with fluids in large–medium pore throats, eliminate fracture effects on the oil recovery factor, and achieve coefficient development of both fractured and unfractured shales. In the CO2 huff ‘n’ puff process, core pressure change could be divided into three stages of injection–holding–depletion, and the oil displacement mode was the piston type. The study of huff ‘n’ puff parameters revealed that huff ‘n’ puff cycles and injection pressure have a great influence on the CO2 huff ‘n’ puff efficiency, while the injection timing and soaking time imposed relatively small effects. For continental shale in the Jimusaer Sag, the optimal CO2 huff ‘n’ puff parameters are five cycles, 4‐MPa injection timing, 25‐MPa injection pressure, and 12‐h soaking time.

Related Organizations
Keywords

Technology, production law, CO2 huff ‘n’ puff, T, Science, Q, continental shale oil, optimization parameters

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
gold
Related to Research communities
Energy Research