
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The influence of methylammonium iodide concentration on the properties of perovskite solar cells

doi: 10.1002/ese3.1724
AbstractThis study focuses on improving the quality of MAPbI3‐based perovskite films by adjusting the concentration ratios of the methylammonium iodide (MAI) precursor using a two‐step sequential deposition method. The primary objective is to explore how altering the MAI concentration influences the microstrain, dislocation density, perovskite film quality, and their subsequent impact on the performance of perovskite solar cells. The examined device configuration CdS/MAPbI3/Spiro‐OMeTAD demonstrates impressive power conversion efficiency of 12.05%, Voc of 1.02 V, Jsc of 16.2 mA cm−2, and fill factor of 0.73. X‐ray diffraction and scanning electron microscope analyses show improved crystal quality and surface characteristics with reduced microstrain, dislocation density, larger crystal grains, and minimized pinholes. The investigation of MAPbI3's optical and electrical characteristics provides in‐depth insights, facilitating the optimization of MAI precursor concentrations for improved perovskite film development and enhanced solar cell performance.
- University of Vaasa Finland
- University of Vaasa Finland
Technology, dislocation density, T, Science, Q, microstrain, perovskite solar cell, MAPbI3, perovskite deposition, series resistance
Technology, dislocation density, T, Science, Q, microstrain, perovskite solar cell, MAPbI3, perovskite deposition, series resistance
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
