Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Science &...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Science & Engineering
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Science & Engineering
Article . 2021
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Theoretical study on the application of isothermal compression technology in vapor‐compression refrigeration systems with an isothermal piston

Authors: Yu Hu; Weiqing Xu; Teng Ren; Maolin Cai; Bo Yang; Yan Shi;

Theoretical study on the application of isothermal compression technology in vapor‐compression refrigeration systems with an isothermal piston

Abstract

AbstractVapor‐compression refrigeration systems are widely used in refrigeration equipment. Theoretically, the process is typically divided into two isobaric processes: an adiabatic isentropic compression process and adiabatic isentropic throttling process. The refrigeration compressor is the main energy‐consuming component in vapor‐compression refrigeration systems. However, this device has a large energy loss and low overall efficiency in the adiabatic isentropic compression process. In this study, a modified vapor‐compression refrigeration cycle with an isothermal piston is proposed to realize near‐isothermal compression of a refrigerator to significantly reduce the energy loss in the compression process and improve the system performance. A real‐gas compression process model is established, and the heat transfer index Hex is set. By changing the heat transfer index Hex, the performances of the vapor‐compression refrigeration system under ideal and real compression conditions are compared and analyzed. Compared with a traditional vapor‐compression refrigeration system, the coefficient of performance of the compressor with an isothermal compression process is increased by approximately 17%. The results also demonstrate that the lower the evaporation temperature Te and higher the condensation temperature Tc, the greater the optimization effect of the isothermal compression.

Related Organizations
Keywords

Technology, T, Science, Q, vapor‐compression refrigeration, heat transfer index, COP, isothermal compression

Powered by OpenAIRE graph
Found an issue? Give us feedback