
Found an issue? Give us feedback
The University of Manchester - Institutional Repository
Article . 1998
Data sources: The University of Manchester - Institutional Repository
European Transactions on Electrical Power
Article . 1998 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Please grant OpenAIRE to access and update your ORCID works.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
All Research products
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu
Fault distance estimation and fault type determination using least error squares method

Authors: Terzija, V. V.; Djuric, M. B.; Radojevic, Z. M.;
Abstract
AbstractIn order to avoid autoreclosure onto a permanent fault, a new numerical algorithm for fault type determination is presented. It estimates the fault distance, as well, and can be utilized in the field of distance protection. The new approach, mathematical model and the solution for the earthless faults is given. For the purpose of unknown fault distance and arc voltage amplitude estimation, the Least Error Squares Method is used. The new algorithm is tested through numerous computer simulations and in the laboratory environment.
Country
United Kingdom
Related Organizations
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average

Found an issue? Give us feedback
citations
Citations provided by BIP!
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
popularity
Popularity provided by BIP!
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
0
Average
Average
Average
Fields of Science (3) View all
Related to Research communities
Energy Research