Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao European Transaction...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
European Transactions on Electrical Power
Article . 2010 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimal allocation of distributed generation using a two-stage multi-objective mixed-integer-nonlinear programming

Authors: A. Abbaspour-Tehrani-fard; S. Porkar; S. Porkar; Philippe Poure; Shahrokh Saadate;

Optimal allocation of distributed generation using a two-stage multi-objective mixed-integer-nonlinear programming

Abstract

Cost is one of the most essential factors that influence many decisions taken in the distribution system planning. In general, cost can be defined as everything that should be sacrificed to gain the desired results. This paper proposes a new two-stage methodology for distributed generation (DG) placement as an attractive option for distribution system planner. This method aims to minimize cost and maximize total system benefit (TSB). Optimal placement and size are obtained from total cost minimization mathematical problem which is solved in the first stage. For each DG cost characteristics and for each investment payback time, there is an optimal location and size. Then the optimal DG investment payback time results from the TSB maximization problem, which is solved in the second stage. The various DG technologies offer the opportunity of selecting the right energy solution at the right location. Five types of DG are tested to give system deciders some choices. Different system conditions are simulated to illustrate the effect of DG installation on the distribution system as well as the ability of the proposed methodology. A user-friendly software package has been developed to solve efficiently and quickly the two optimization mathematical problems. The proposed methodology has been tested on IEEE 30-bus test system. Copyright © 2010 John Wiley & Sons, Ltd.

Keywords

[SPI.NRJ] Engineering Sciences [physics]/Electric power

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    42
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
42
Top 10%
Top 10%
Average