
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Distribution network costs under different penetration levels of distributed generation

doi: 10.1002/etep.503
handle: 11531/5083
AbstractNowadays, the amount of distributed generation (DG) connected to distribution networks is increasing significantly. In a European context, one of the main drivers for this growth is the support of electricity generation from renewable energy sources (RES) and combined heat and power (CHP) plants. Hence, these DG units mostly consist of non‐controllable generation. Distribution is a regulated activity which is, at least, legally and functionally unbundled from the generation activity. These issues, together with the fact that distribution networks were not originally designed to accommodate generation, pose significant challenges on distribution network planning and operation. One of the major concerns of distribution system operators (DSOs) is the impact that large penetration levels of DG may have on distribution network costs. This paper presents a quantification of the impact of DG on distribution network costs in three real distribution areas. Different scenarios of demand and generation have been analysed for each region. Two possible situations are taken into account in each scenario: maximum net demand and maximum net generation. The computation of the distribution network costs was carried out by means of two large‐scale distribution planning models called reference network models (RNMs). Copyright © 2010 John Wiley & Sons, Ltd.
330
330
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).47 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
