Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuel Cellsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel Cells
Article . 2007 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel Cells
Article . 2007
Data sources: VIRTA
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Influence of the Gas Diffusion Layer on Water Management in Polymer Electrolyte Fuel Cells

Authors: Holmström, N.; Ihonen, Jari; Lundblad, A.; Lindbergh; G.;

The Influence of the Gas Diffusion Layer on Water Management in Polymer Electrolyte Fuel Cells

Abstract

AbstractPerformance losses due to flooding of gas diffusion layers (GDLs) and flow fields as well as membrane dehydration are two of the major problems in PEFC. In this investigation, the effect of GDL on the cell water management in PEFC is studied using segmented and single cell experiments. The behaviour of four different commercial GDLs was investigated at both high and low inlet humidity conditions by galvanostatic fuel cell experiments. The influence of varying reactant humidity and gas composition was studied. The results at high inlet humidity show that none of the studied GDLs are significantly flooded on the anode side. On the other hand, when some of the GDLs are used on the cathode side they are flooded, leading to increased mass transfer losses. The results at low inlet humidity conditions show that the characteristics of the GDL influence the membrane hydration. It is also shown that inlet humidity on the anode side has a major effect on flooding at the cathode.

Keywords

Polymer electrolyte fuel cell, Water management, Membrane hydration, Flooding, SDG 7 - Affordable and Clean Energy, SDG 6 - Clean Water and Sanitation, Gas diffusion layer

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    48
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
48
Top 10%
Top 10%
Top 10%