Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Fuel Cellsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Fuel Cells
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DLR publication server
Other literature type . 2017
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel Cells
Article . 2017 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Investigation of PEFC Sub‐Zero Startup: Influence of Initial Conditions and Residual Water

Authors: Stahl, Peter; Biesdorf, Jan; Boillat, Pierre; Friedrich, Kaspar Andreas;

An Investigation of PEFC Sub‐Zero Startup: Influence of Initial Conditions and Residual Water

Abstract

AbstractIsothermal cold starts of polymer electrolyte fuel cells were performed at sub‐zero temperatures and analyzed by means of neutron radiography in order to unravel the relation between the preconditioning of the cell and the cold start capability. It was found out that the initial humidification state of the membrane (determined by its resistance) has a clear correlation with the duration of the initial phase of the cold start, but not with the total duration of startup until cell failure. In the experimental setup the impact of realistic and commercial sealing solutions was taken into account by adding an edge channel. The impact of water accumulations in this region on the cold start capability was assessed. Liquid water located in the outer perimeter of a cell could be directly verified to freeze during cell cool down by a novel dual spectrum neutron radiography method. The amount of water accumulated in the outer cell perimeter showed some correlation with the total duration of the cold start. It was found out that residual water located in the edge channel can initiate freezing of a substantial part of the active area nearby.

Country
Germany
Keywords

Elektrochemische Energietechnik, cold start ice Formation degradation

Powered by OpenAIRE graph
Found an issue? Give us feedback