Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuel Cellsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel Cells
Article . 2024 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multi‐Array Tubular Microbial Fuel Cell‐Based Biosensor with Membrane Electrode Assembled Air‐Cathodes

Authors: Ryan Yow Zhong Yeo; Wei Lun Ang; Mimi Hani Abu Bakar; Manal Ismail; Mohd Nur Ikhmal Salehmin; Eileen Hao Yu; Swee Su Lim;

Multi‐Array Tubular Microbial Fuel Cell‐Based Biosensor with Membrane Electrode Assembled Air‐Cathodes

Abstract

ABSTRACTUsing microbial fuel cells (MFCs) as biosensors ensures a sustainable method for water quality detection. However, the research on MFC‐based biosensors with a tubular setup is still scarce. In this study, a tubular multi‐array MFC‐based biosensor setup with air‐cathodes was assembled under the membrane electrode assembly configuration. Three different materials, including carbon black (CB), Pt/C (PtC), and polyaniline (PANI), were synthesized and coated on the membrane‐facing side of the air‐cathode to demonstrate the effects of modified air‐cathodes on the overall performance of the MFC‐biosensors. Unmodified carbon cloths were used as anodes. Three days of startup period were required by the biosensors before producing an electrical signal output. The highest current density was obtained by the polytetrafluoroethylene (PTFE)/CB/PtC (0.31 A m−2) sample followed by PTFE/CB/PANI (0.09 A m−2), and lastly PTFE/CB (0.05 A m−2). The control (PTFE only) sample did not generate any noticeable electrical signal. The electrochemical impedance spectroscopy analysis showed that the incorporation of PtC on the PTFE/CB sample lowered the charge transfer resistance (Rct), whereas the addition of PANI increased the Rct. Despite the differences in Rct values, both PTFE/CB/PtC and PTFE/CB/PANI samples demonstrated a better current density production than the PTFE/CB sample. Thus, modified air‐cathodes further elevated the biosensor's performance.

Country
United Kingdom
Keywords

540, 620

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average