
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A convection‐permitting dynamically downscaled dataset over the Midwestern United States

doi: 10.1002/gdj3.188
AbstractClimate change is expected to have far‐reaching effects at both the global and regional scale, but local effects are difficult to determine from coarse‐resolution climate studies. Dynamical downscaling can provide insight into future climate projections on local scales. Here, we present a new dynamically downscaled dataset for Indiana and the surrounding regions. Output from the Community Earth System Model (CESM) version 1 is downscaled using the Weather Research and Forecasting model (WRF). Simulations are run with a 24‐hr reinitialization strategy and a 12‐hr spin‐up window. WRF output is bias corrected to the National Centers for Environmental Protection/National Center for Atmospheric Research 40‐year Reanalysis project (NCEP) using a modified quantile mapping method. Bias‐corrected 2‐m air temperature and accumulated precipitation are the initial focus, with additional variables planned for future releases. Regional climate change signals agree well with larger global studies, and local fine‐scaled features are visible in the resulting dataset, such as urban heat islands, frontal passages, and orographic temperature gradients. This high‐resolution climate dataset could be used for down‐stream applications focused on impacts across the domain, such as urban planning, energy usage, water resources, agriculture and public health.
- DePaul University United States
- Pacific Northwest National Laboratory United States
- Indiana University Bloomington United States
- Pacific Northwest National Laboratory United States
QE1-996.5, WRF, downscaling, Geology, midwest, climate change, Meteorology. Climatology, QC851-999
QE1-996.5, WRF, downscaling, Geology, midwest, climate change, Meteorology. Climatology, QC851-999
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
