Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Califo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hydrological Processes
Article
License: publisher-specific, author manuscript
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hydrological Processes
Article . 2018 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Impact of aerosols on reservoir inflow: A case study for Big Creek Hydroelectric System in California

Authors: Farzana Kabir; Nanpeng Yu; Weixin Yao; Longtao Wu; Jonathan H. Jiang; Yu Gu; Hui Su;

Impact of aerosols on reservoir inflow: A case study for Big Creek Hydroelectric System in California

Abstract

AbstractAccurate and reliable reservoir inflow forecast is instrumental to the efficient operation of the hydroelectric power systems. It has been discovered that natural and anthropogenic aerosols have a great influence on meteorological variables such as temperature, snow water equivalent, and precipitation, which in turn impact the reservoir inflow. Therefore, it is imperative for us to quantify the impact of aerosols on reservoir inflow and to incorporate the aerosol models into future reservoir inflow forecasting models. In this paper, a comprehensive framework was developed to quantify the impact of aerosols on reservoir inflow by integrating the Weather Research and Forecasting model with Chemistry (WRF‐Chem) and a dynamic regression model. The statistical dynamic regression model produces forecasts for reservoir inflow based on the meteorological output variables from the WRF‐Chem model. The case study was performed on the Florence Lake and Lake Thomas Alva Edison of the Big Creek Hydroelectric Project in the San Joaquin Region. The simulation results show that the presence of aerosols results in a significant reduction of annual reservoir inflow by 4–14%. In the summer, aerosols reduce precipitation, snow water equivalent, and snowmelt that leads to a reduction in inflow by 11–26%. In the spring, aerosols increase temperature and snowmelt which leads to an increase in inflow by 0.6–2%. Aerosols significantly reduce the amount of inflow in the summer when the marginal value of water is extremely high and slightly increase the inflow in the spring when the run‐off risk is high. In summary, the presence of aerosols is detrimental to the optimal utilization of hydroelectric power systems.

Countries
China (People's Republic of), United States, China (People's Republic of), China (People's Republic of)
Keywords

Environmental Engineering, 550, aerosol, Dynamic regression, water-energy nexus, inflow simulation, Civil Engineering, 333, Inflow simulation, Physical Geography and Environmental Geoscience, Affordable and Clean Energy, dynamic regression, Water-energy nexus, Aerosol, ARIMAX

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
hybrid