Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Integrated Environme...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Integrated Environmental Assessment and Management
Article . 2021 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The role of solar energy and eco-innovation in reducing environmental degradation in China: Evidence from QARDL approach

Authors: Zubaria Andlib; Fengsheng Chien; Fengsheng Chien; Muhammad Ibrahim Shah; Tahseen Ajaz; Mesfin G Genie; Mesfin G Genie; +1 Authors

The role of solar energy and eco-innovation in reducing environmental degradation in China: Evidence from QARDL approach

Abstract

Abstract In the past decade, researchers have shifted their interests to explore different ways to mitigate environmental degradation. In that context, the present study explores the role of solar energy and eco-innovation in reducing environmental degradation in China. The study utilized data for the period 1990–2018 and applied the latest available econometric technique, a quantile autoregressive distributed lag model, to determine the impacts of solar energy and eco-innovation on improving China's environmental quality. According to the empirical results, in the long term, solar energy is negatively and significantly associated with CO2 emissions at higher quantiles. Eco-innovation has proven to be the most important channel to mitigate CO2 emissions in China. Eco-innovation is exerting a negative and significant influence on CO2 emissions at all quantiles in the long term. In addition, the population size is causing CO2 emissions to surge significantly at lower quantiles. The empirical analysis reveals that per capita income (PI) is positively associated with CO2 emissions at all quantiles, but it is significant only at higher quantiles in China. We found evidence of unidirectional causality for eco-innovation to CO2 emissions and solar energy to CO2 emissions. However, for population and CO2 emissions, per capita income, and CO2 emissions, we found bidirectional causality. As indicated by our empirical results, solar energy and eco-innovation are the two most effective channels to control CO2 emissions in China. Therefore, policies based on the promotion of eco-innovation and the initiation of new solar energy projects can control emissions and improve environmental quality in China. Integr Environ Assess Manag 2022;18:555–571. © 2021 SETAC KEY POINTS The present study explores the role of solar energy and eco-innovation in reducing environmental degradation in China. In the long term, solar energy is negatively and significantly associated with CO2 emissions at higher quantiles. Eco-innovation has proven to be the most important channel to mitigate CO2 emissions in China.

Country
Italy
Keywords

China, Carbon Dioxide, Solar Energy, Economic Development

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    99
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
99
Top 1%
Top 10%
Top 1%