Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Chemical ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Chemical Technology & Biotechnology
Article . 2013 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Enzymatic hydrolysis of Norway spruce and sugarcane bagasse after treatment with 1‐allyl‐3‐methylimidazolium formate

Authors: Leif J. Jönsson; Jyri-Pekka Mikkola; Jyri-Pekka Mikkola; John Gräsvik; Venkata Prabhakar Soudham; Björn Alriksson;

Enzymatic hydrolysis of Norway spruce and sugarcane bagasse after treatment with 1‐allyl‐3‐methylimidazolium formate

Abstract

AbstractBACKGROUNDEnzymatic hydrolysis of cellulose in lignocellulosic materials suffers from slow reaction rates due to limited access to enzyme adsorption sites and to the high crystallinity of the cellulose. In this study, an attempt was made to facilitate enzymatic hydrolysis by pretreatment of cellulosic materials using the ionic liquid (IL) 1‐allyl‐3‐methylimidazolium formate ([Amim][HCO2]) under mild reaction conditions. The effect of the IL was compared with that of thermochemical pretreatment under acidic conditions.RESULTSThe lignocellulosic substrates investigated were native and thermochemically pretreated Norway spruce and sugarcane bagasse. Microcrystalline cellulose (Avicel) was included for comparison. The IL treatments were performed in the temperature range 45–120 °C and, after regeneration and washing of the cellulosic substrates, enzymatic saccharification was carried out at 45 °C for 72 h. After 12 h of hydrolysis, the glucose yields from regenerated native spruce and sugarcane bagasse were up to nine times higher than for the corresponding untreated substrates. The results also show positive effects of pretreatment using [Amim][HCO2] on the hydrolysis of xylan and mannan.ConclusionThe present work demonstrates that both native wood and agricultural residues are readily soluble in [Amim][HCO2] under gentle conditions, and that pretreatment with ionic liquids such as [Amim][HCO2] warrants further attention as a potential alternative to conventional pretreatment techniques. © 2013 Society of Chemical Industry

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Average