

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Optimization of microalgae oil extraction under ultrasound and microwave irradiation

doi: 10.1002/jctb.4272
handle: 10261/103456
AbstractBACKGROUNDMicroalgae are one of the most promising biofuel sources that the world has to offer; nevertheless the conversion process is hampered by technical and economic problems that are mainly related to de‐watering and extraction. The efficiency of the process can be dramatically improved by means of non‐conventional techniques such as ultrasound (US) and microwaves (MW). Scaling‐up feasibility is strictly linked to reactor efficiency, energy consumption, environmental impact and overall cost. In the present work, the optimization of lipid extraction from Nannochloropsis gaditana microalga is investigated.RESULTSA series of selected solvent mixtures and procedures have been tested and compared. Conventional extraction procedures with chloroform/methanol mixtures and fast US‐ and MW‐assisted extractions with methanol gave comparable fatty acid (FA) w/w% from dried microalgae. The highest extraction yield and lowest energy consumption was found to occur under MW irradiation, especially at high temperatures and under pressure.CONCLUSIONThis study highlights the advantages of US‐ and MW‐assisted lipid extraction from microalgae, both in terms of efficiency and operational costs. © 2013 Society of Chemical Industry
Biofuels, Ultrasond, Microalgae, Extraction, Microwaves
Biofuels, Ultrasond, Microalgae, Extraction, Microwaves
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).74 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10% visibility views 37 download downloads 155 - 37views155downloads
Data source Views Downloads DIGITAL.CSIC 37 155


