Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Chemical ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Chemical Technology & Biotechnology
Article . 2019 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Conversion of monosaccharides into levulinic acid/esters: impacts of metal sulfate addition and the reaction medium

Authors: Kai Sun; Lijun Zhang; Yuewen Shao; Qingyin Li; Huailin Fan; Guanggang Gao; Shu Zhang; +3 Authors

Conversion of monosaccharides into levulinic acid/esters: impacts of metal sulfate addition and the reaction medium

Abstract

AbstractBACKGROUNDInorganic salts could be used as catalysts for the effective conversion of sugars. In this study, the impacts of various metal sulfates (Na2SO4, K2SO4, MnSO4, CoSO4, NiSO4, ZnSO4, CuSO4, Fe2(SO4)3, La2(SO4)3 and Ce(SO4)2) on the conversion of glucose/fructose to levulinic acid in varied reaction media were evaluated.RESULTSThe sulfates strongly chelated with the sugars, preventing their dehydration reactions in the presence of sulfuric acid and leading to polymerization of the sugars. The sulfates themselves showed varied activity and selectivity for the conversion of the sugars to levulinic acid/esters or 5‐hydroxymethylfurfural (HMF), depending on the coordination with the reaction medium. K2SO4 or Na2SO4 could catalyze the production of HMF from glucose/fructose in water, while in DMSO the yield of HMF was substantially higher. In THF, nevertheless, almost no HMF was formed, while other sulfates such as NiSO4 in THF could effectively catalyze the conversion of fructose to HMF. In alcohols, Fe2(SO4)3 was the most effective sulfate for the conversion of the sugars to levulinic acid/esters, and the alcohols could effectively suppress the polymerization of the sugars.CONCLUSIONThe distinct catalytic performances of the sulfates in the varied reaction media originated from their different coordination or chelation with the sugars and the reaction medium. © 2019 Society of Chemical Industry

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Average
Top 10%