Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Pharmaceu...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Pharmaceutical Sciences
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Improved Aerosolization Performance of Salbutamol Sulfate Formulated with Lactose Crystallized from Binary Mixtures of Ethanol—Acetone

Authors: Martyn D. Ticehurst; Ali Nokhodchi; Waseem Kaialy; Waseem Kaialy; John Murphy;

Improved Aerosolization Performance of Salbutamol Sulfate Formulated with Lactose Crystallized from Binary Mixtures of Ethanol—Acetone

Abstract

It has been shown that dry powder inhaler (DPI) formulations typically achieve low fine particle fractions (poor performance). A commonly held theory is that this is due, at least in part, to low levels of detachment of drug from lactose during aerosolization as a result of strong adhesion of drug particles to the carrier surfaces. Therefore, the purpose of the present study is to overcome poor aerosolization performance of DPI formulation by modification of lactose particles. Lactose particles were crystallized by adding solution in water to different ratios of binary mixtures of ethanol-acetone. The results showed that modified lactose particles had exceptional aerosolization performance that makes them superior to commercial lactose particles. Morphology assessment showed that crystallized lactose particles were less elongated, more irregular in shape, and composed of smaller primary lactose particles compared with commercial lactose. Solid-state characterization showed that commercial lactose particles were α-lactose monohydrate, whereas crystallized lactose particles were a mixture of α-lactose monohydrate and β-lactose according to the ratio of ethanol-acetone used during crystallization process. The enhanced performance could be mainly due to rougher surface and/or higher amounts of fines compared with the lactose crystallized from pure ethanol or commercial lactose.

Related Organizations
Keywords

Chemistry, Pharmaceutical, Drug Compounding, Lactose, Microscopy, Atomic Force, Acetone, Administration, Inhalation, Albuterol, Particle Size, Adrenergic beta-2 Receptor Agonists, Aerosols, Drug Carriers, Calorimetry, Differential Scanning, Ethanol, Adhesiveness, Dry Powder Inhalers, Bronchodilator Agents, Microscopy, Electron, Scanning, Powders, Crystallization, Rheology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Top 10%
Top 10%