
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Electrospinning Ethanol–Water Solutions of Poly(Acrylic Acid): Nonlinear Viscosity Variations and Dynamic Taylor Cone Behavior

Electrospinning Ethanol–Water Solutions of Poly(Acrylic Acid): Nonlinear Viscosity Variations and Dynamic Taylor Cone Behavior
AbstractElectrospinning of polymer solutions is a multifaceted process that depends on the careful balancing of many parameters to achieve a desired outcome, in many cases including mixtures of multiple solvents. A systematic study of how the solution viscosity —a good probe of solvent–polymer interactions—and the electrospinnability change when poly(acrylic acid) (PAA) is dissolved in ethanol–water mixtures at varying mixing ratio is carried out. A pronounced maximum is found in at a water‐to‐ethanol molar ratio of about 2:1, where the solvent mixture deviates maximally from ideal mixing behavior and partial deprotonation of carboxyl groups by water coincides synergistically with dissolution of the uncharged protonated PAA fraction by ethanol. The PAA concentration is tuned as a function of water–ethanol ratio to obtain a common value of for all solvent mixtures that is suitable for electrospinning. For high PAA content, the Taylor cone grows in volume over time despite minimum solution flow rate, even experiencing surface gelation for ethanol‐rich solutions. This is attributed to the hygroscopic nature of PAA, drawing excess water into the Taylor cone from the air during spinning.
- Università Campus Bio-Medico Italy
- Cornell University United States
- Wageningen University & Research Netherlands
- Università Campus Bio-Medico Italy
- University of Luxembourg Luxembourg
water, solvents, poly(acrylic acid), viscosity, ethanol, electrospinning, polymers
water, solvents, poly(acrylic acid), viscosity, ethanol, electrospinning, polymers
1 Research products, page 1 of 1
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
