
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Conjugated Polymers Via Direct Arylation Polymerization in Continuous Flow: Minimizing the Cost and Batch‐to‐Batch Variations for High‐Throughput Energy Conversion

pmid: 29028137
Conjugated Polymers Via Direct Arylation Polymerization in Continuous Flow: Minimizing the Cost and Batch‐to‐Batch Variations for High‐Throughput Energy Conversion
AbstractContinuous flow methods are utilized in conjunction with direct arylation polymerization (DArP) for the scaled synthesis of the roll‐to‐roll compatible polymer, poly[(2,5‐bis(2‐hexyldecyloxy)phenylene)‐alt‐(4,7‐di(thiophen‐2‐yl)‐benzo[c][1,2,5]thiadiazole)] (PPDTBT). PPDTBT is based on simple, inexpensive, and scalable monomers using thienyl‐flanked benzothiadiazole as the acceptor, which is the first β‐unprotected substrate to be used in continuous flow via DArP, enabling critical evaluation of the suitability of this emerging synthetic method for minimizing defects and for the scaled synthesis of high‐performance materials. To demonstrate the usefulness of the method, DArP‐prepared PPDTBT via continuous flow synthesis is employed for the preparation of indium tin oxide (ITO)‐free and flexible roll‐coated solar cells to achieve a power conversion efficiency of 3.5% for 1 cm2 devices, which is comparable to the performance of PPDTBT polymerized through Stille cross coupling. These efforts demonstrate the distinct advantages of the continuous flow protocol with DArP avoiding use of toxic tin chemicals, reducing the associated costs of polymer upscaling, and minimizing batch‐to‐batch variations for high‐quality material.
- Technical University of Denmark Denmark
- University of California System United States
Polymers, Polymerization, Spectrophotometry, Solar Energy, Quantum Theory
Polymers, Polymerization, Spectrophotometry, Solar Energy, Quantum Theory
4 Research products, page 1 of 1
- 2017IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).26 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
