Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Macromolecular Rapid...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Macromolecular Rapid Communications
Article . 2017 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Recent Advances in Nonfullerene Acceptors for Organic Solar Cells

Authors: Fuchuan Liu; Tianyu Hou; Xiangfei Xu; Liya Sun; Jiawang Zhou; Xingang Zhao; Shiming Zhang;

Recent Advances in Nonfullerene Acceptors for Organic Solar Cells

Abstract

AbstractRecently, research on nonfullerene acceptors in organic solar cells has gradually become a hot topic due to such superior characteristics of light absorption and energy‐level‐convenient manipulation, multiformity of the photoactive material structures, as well as the extensive area in production compared to the fullerene derivatives. However, the nonfullerene acceptors evolved slowly before 2012 and, as a matter of fact, the power conversion efficiency values could only bear 2.0%. Strikingly, nonfullerene acceptors have developed at a fast pace since 2013, with the best device performance of 13.1% now. In this review, recent research progress on nonfullerene acceptors, including small molecules and polymers, are sorted and summarized on the basis of the different characteristics.

Related Organizations
Keywords

Small Molecule Libraries, Electric Power Supplies, Molecular Structure, Polymers, Solar Energy, Electrochemical Techniques, Fullerenes, Photochemical Processes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    57
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
57
Top 10%
Top 10%
Top 10%
Related to Research communities
Energy Research