Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Macromolecular Rapid...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Macromolecular Rapid Communications
Article . 2018 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Design and Synthesis of a Novel n‐Type Polymer Based on Asymmetric Rylene Diimide for the Application in All‐Polymer Solar Cells

Authors: Ailing Tang; Erjun Zhou; Fan Chen; Fan Chen; Jing Yang; Jing Yang; Bo Xiao; +4 Authors

Design and Synthesis of a Novel n‐Type Polymer Based on Asymmetric Rylene Diimide for the Application in All‐Polymer Solar Cells

Abstract

AbstractA novel n‐type polymer of PTDI‐T based on asymmetric rylene diimide and thiophene is designed and synthesized. The highest power conversion efficiency of 4.70% is achieved for PTB7‐Th:PTDI‐T‐based devices, which is obviously higher than those of the analogue polymers of PPDI‐2T and PDTCDI. When using PBDB‐T as a donor, an open‐circuit voltage (VOC) as high as 1.03 V is obtained. The results indicate asymmetric rylene diimide is a kind of promising building block to construct n‐type photovoltaic polymers.

Keywords

Polymers, Solar Energy, Sunlight, Fullerenes, Thiophenes, Imides

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Average
Top 10%
Related to Research communities
Energy Research