Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Magnetic Resonance i...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Magnetic Resonance in Medicine
Article . 2013 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Amide proton transfer imaging of high intensity focused ultrasound-treated tumor tissue

APT Imaging of HIFU-Treated Tumor Tissue
Authors: Stefanie J. Hectors; Gustav J. Strijkers; Klaas Nicolay; Igor Jacobs;

Amide proton transfer imaging of high intensity focused ultrasound-treated tumor tissue

Abstract

In this study, the suitability of amide proton transfer (APT) imaging as a biomarker for the characterization of high intensity focused ultrasound (HIFU)-treated tumor tissue was assessed.APT imaging was performed on tumor-bearing mice before (n = 15), directly after (n = 15) and at 3 days (n = 8) after HIFU treatment. A control group (n = 7) of nontreated animals was scanned at the same time points. Histogram analysis of the tumor APT-weighted signal distributions was performed to assess HIFU-induced changes in the tumor APT contrast.Distinct regions of decreased APT-weighted signal were observed at both time points after HIFU treatment. Analysis of the tumor APT-weighted signal distribution showed a pronounced shift toward lower APT-weighted signal values after HIFU treatment. A significantly increased fraction of pixels with an APT-weighted signal value between -10 and -2% was observed both directly (0.37 ± 0.16) and at 3 days (0.49 ± 0.16) after HIFU treatment as compared to baseline (0.22 ± 0.16).The presented results show that APT imaging is sensitive to HIFU-induced changes in tumor tissue and may thus serve as a new biomarker for monitoring the response of tumor tissue to HIFU treatment.

Related Organizations
Keywords

Research Support, Sensitivity and Specificity, High-Energy Shock Waves, Mice, Cell Line, Tumor, Journal Article, Animals, Cancer treatment response, Non-U.S. Gov't, Medicine(all), Mice, Inbred BALB C, Reproducibility of Results, Amides, Magnetic Resonance Imaging, High intensity focused ultrasound, Treatment Outcome, Surgery, Computer-Assisted, Radiology Nuclear Medicine and imaging, Amide proton transfer imaging, Colonic Neoplasms, High-Intensity Focused Ultrasound Ablation, Protons

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Average
Average
Top 10%
bronze