

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Phosphonium‐based polythiophene conjugated polyelectrolytes with different surfactant counterions: thermal properties, self‐assembly and photovoltaic performances

doi: 10.1002/pi.6088
AbstractPhosphonium‐based polythiophene conjugated polyelectrolytes (CPEs) with three different counterions (dodecylsulfate, octylsulfate and perfluorooctane sulfonate) are synthesized to determine how the nature of the counterion affects the thermal properties, the self‐assembly in thin films and the performance as the cathode interfacial layer in polymer solar cells (PSCs). The counterion has a significant effect on the thermal properties of the CPEs, affecting both their glass transition and crystalline behaviour. Grazing‐incidence wide‐angle X‐ray scattering studies also indicate that changing the nature of the counterion influences the microstructural organization in thin films (face‐on versus edge‐on orientation). The affinity of the CPEs with the underlying photoactive layer in PSCs is highly correlated with the counterion species. Finally, in addition to an increase of the power conversion efficiency of ca 15% when using these CPEs as cathode interfacial layers in PSCs, a higher device stability is noted, compared to a reference device with a calcium interlayer. © 2020 Society of Industrial Chemistry
- Rutherford Appleton Laboratory United Kingdom
- Forschungszentrum Jülich Germany
- Hasselt University Belgium
- French National Centre for Scientific Research France
- University of Cambridge United Kingdom
[SPI.MAT]Engineering Sciences [physics]/Materials
[SPI.MAT]Engineering Sciences [physics]/Materials
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average visibility views 6 download downloads 8 - 6views8downloads
Data source Views Downloads Apollo 6 8


