
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Laser processing of TiO2 films for dye solar cells: a thermal, sintering, throughput and embodied energy investigation

doi: 10.1002/pip.2261
handle: 2108/140425
ABSTRACTWe have analysed and optimised a laser process for the sintering of the TiO2 layers in dye solar cells (DSCs). Through a thermographic characterisation of the process, we show that it is possible to scale and process large areas uniformly (16 cm2). We fabricated DSCs with nanocrystalline (nc)‐TiO2 films sintered by using pulsed ultraviolet laser with an average output power P varying from 1 W to 7 W whilst mainting a constant power conversion efficiency η. The highest efficiency reached for a laser sintered DSC was 7%. The time required to sinter 1 m2 of nc‐TiO2 film was found to decrease hyperbolically with P, which is important for determining process takt times. We quantified the embodied energy (EE) required to sinter 1 m2 of the active TiO2 layer for a variety of different processes, and found that the EE for the laser sintering process with a system wall plug efficiency of 3.5% to be competitive with the more conventional oven and belt furnace treatments. We outline the main features required from a laser system to carry out an efficient, energetically favourable and industrially applicable automated process with competitive throughput. Copyright © 2012 John Wiley & Sons, Ltd.
- Fraunhofer Society Germany
- University of Rome Tor Vergata Italy
- University of Rome Tor Vergata Italy
Settore ING-INF/01 - ELETTRONICA, 620
Settore ING-INF/01 - ELETTRONICA, 620
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).35 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
