Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Progress in Photovol...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Progress in Photovoltaics Research and Applications
Article . 2013 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cu2ZnSnSe4 thin film solar cells produced via co‐evaporation and annealing including a SnSe2 capping layer

Authors: Redinger, Alex; Mousel, Marina; Djemour, Rabie; Gütay, Levent; Valle, Nathalie; Siebentritt, Susanne;

Cu2ZnSnSe4 thin film solar cells produced via co‐evaporation and annealing including a SnSe2 capping layer

Abstract

ABSTRACTCu2ZnSnSe4 (CZTSe) thin film solar cells have been produced via co‐evaporation followed by a high‐temperature annealing. In order to reduce the decomposition of the CZTSe, a SnSe2 capping layer has been evaporated onto the absorber prior to the high‐temperature treatment. This eliminates the Sn losses due to SnSe evaporation. A solar cell efficiency of 5.1% could be achieved with this method. Moreover, the device does not suffer from high series resistance, and the dominant recombination pathway is situated in the absorber bulk. Finally, different illumination conditions (white light, red light, and yellow light) reveal a strong loss in fill factor if no carriers are generated in the CdS buffer layer. This effect, known as red‐kink effect, has also been observed in the closely related Cu(In,Ga)Se2 thin film solar cells. Copyright © 2013 John Wiley & Sons, Ltd.

Country
Luxembourg
Related Organizations
Keywords

: Physique [G04] [Physique, chimie, mathématiques & sciences de la terre], : Physics [G04] [Physical, chemical, mathematical & earth Sciences]

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    55
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
55
Top 10%
Top 10%
Top 10%
Green
hybrid
Related to Research communities
Energy Research