Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della Ricer...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Progress in Photovoltaics Research and Applications
Article . 2014 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

High efficiency photovoltaic module based on mesoscopic organometal halide perovskite

Authors: Matteocci, F; CINA', LUCIO; DI GIACOMO, FRANCESCO; Razza, S; Palma, Al; Guidobaldi, A; D'EPIFANIO, ALESSANDRA; +4 Authors

High efficiency photovoltaic module based on mesoscopic organometal halide perovskite

Abstract

AbstractWe fabricated monolithic solid state modules based on organometal CH3NH3PbI3 and CH3NH3PbI3 − xClx perovskites using poly‐(3‐hexylthiophene) and Spiro‐OMeTAD as hole transport materials (HTMs). In particular, we developed innovative and scalable patterning procedures to minimize the series resistance at the integrated series‐interconnections. By using these optimization steps, we reached a maximum conversion efficiency of 8.2% under AM1.5G at 1 Sun illumination conditions using the CH3NH3PbI3 − xClx perovskite and the poly‐(3‐hexylthiophene) as HTM. Finally, we investigated the double‐step deposition of CH3NH3PbI3 using the Spiro‐OMeTAD, reaching a maximum conversion efficiency on active area (10.08 cm2) equal to 13.0% (9.1% on aperture area) under AM1.5G at 1 Sun illumination conditions. This remarkable result represents the highest PCE value reached for the perovskite solar modules. Copyright © 2014 John Wiley & Sons, Ltd.

Country
Italy
Keywords

Electric resistance, Halide perovskite, Solar module, Efficiency, Perovskite, Double-step, Poly (3-hexylthiophene), Series resistance, double-step deposition, Settore ING-INF/01 - ELETTRONICA, Deposition, Hole transport material, double-step deposition; perovskite solar module; series-connected solar module; Carrier mobility; Conversion efficiency; Deposition; Efficiency; Electric resistance; Perovskite; Photovoltaic cells;Double-step; Halide perovskites; Hole transport materials; Photovoltaic modules; Poly (3-hexylthiophene); Series resistances; Solar module; Solid-state modules, series-connected solar module, Solid-state modules, perovskite solar module, Photovoltaic module, Photovoltaic cell, Carrier mobility, Settore CHIM/07 - FONDAMENTI CHIMICI DELLE TECNOLOGIE, Conversion efficiency

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    116
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
116
Top 1%
Top 10%
Top 1%
Related to Research communities
Energy Research