Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Progress in Photovol...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Progress in Photovoltaics Research and Applications
Article . 2015 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Current transport studies of amorphous n/p junctions and its application in a‐Si:H/HIT‐type tandem cells

Authors: S.M. Iftiquar; Sangho Kim; Junsin Yi; Vinh Ai Dao; Youngseok Lee;

Current transport studies of amorphous n/p junctions and its application in a‐Si:H/HIT‐type tandem cells

Abstract

AbstractThis paper presents an understanding of the fundamental carrier transport mechanism in hydrogenated amorphous silicon (a‐Si:H)‐based n/p junctions. These n/p junctions are, then, used as tunneling and recombination junctions (TRJ) in tandem solar cells, which were constructed by stacking the a‐Si:H‐based solar cell on the heterojunction with intrinsic thin layer (HIT) cell. First, the effect of activation energy (Ea) and Urbach parameter (Eu) of n‐type hydrogenated amorphous silicon (a‐Si:H(n)) on current transport in an a‐Si:H‐based n/p TRJ has been investigated. The photoluminescence spectra and temperature‐dependent current–voltage characteristics in dark condition indicates that the tunneling is the dominant carrier transport mechanism in our a‐Si:H‐based n/p‐type TRJ. The fabrication of a tandem cell structure consists of an a‐Si:H‐based top cell and an HIT‐type bottom cell with the a‐Si:H‐based n/p junction developed as a TRJ in between. The development of a‐Si:H‐based n/p junction as a TRJ leads to an improved a‐Si:H/HIT‐type tandem cell with a better open circuit voltage (Voc), fill factor (FF), and efficiency. The improvements in the cell performance was attributed to the wider band‐tail states in the a‐Si:H(n) layer that helps to an enhanced tunneling and recombination process in the TRJ. The best photovoltage parameters of the tandem cell were found to be Voc = 1430 mV, short circuit current density = 10.51 mA/cm2, FF = 0.65, and efficiency = 9.75%. Copyright © 2015 John Wiley & Sons, Ltd.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
bronze