Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Progress in Photovol...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
TECNALIA Publications
Article . 2016
License: CC BY
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Progress in Photovoltaics Research and Applications
Article . 2016 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
https://dx.doi.org/10.24406/pu...
Other literature type . 2016
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Changes of solar cell parameters during damp-heat exposure

Changes of solar cell parameters
Authors: Zhu, Jiang; Koehl, Michael; Hoffmann, Stephan; Berger, Karl Anton; Zamini, Shokufeh; Bennett, Ian; Gerritsen, Eric; +14 Authors

Changes of solar cell parameters during damp-heat exposure

Abstract

The electrical ageing of photovoltaic modules during extended damp-heat tests at different stress levels is investigated for three types of crystalline silicon photovoltaic modules with different backsheets, encapsulants and cell types. Deploying different stress levels allows determination of an equivalent stress dose function, which is a first step towards a lifetime prediction of devices. The derived humidity dose is used to characterise the degradation of power as well as that of the solar cell's equivalent circuit parameters calculated from measured current–voltage characteristics. An application of this to the samples demonstrates different modes in the degradation and thus enables better understanding of the module's underlying ageing mechanisms. The analysis of changes in the solar cell equivalent circuit parameters identified the primary contributors to the power degradation and distinguished the potential ageing mechanism for each types of module investigated in this paper. © 2016 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons Ltd. © 2016 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons Ltd. This work was supported in part by the European Commission under FP7 grant N° 262533 SOPHIA (INFRA-2010- 1.1.22_CP-CSA-Infra) and by the Research Councils UK (RCUK) under project ‘Stability and Performance of Photovoltaics (STAPP)’ (contract no: EP/H040331/1).

Country
Spain
Keywords

photovoltaic modules, damp-heat, modelling, ageing, solar cells, degradation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    70
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
70
Top 1%
Top 10%
Top 10%
Green
hybrid