Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Progress in Photovol...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Progress in Photovoltaics Research and Applications
Article . 2018 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Using hydrogen‐doped In2O3 films as a transparent back contact in (Ag,Cu)(In,Ga)Se2 solar cells

Authors: Jan Keller; Nina Shariati Nilsson; Asim Aijaz; Lars Riekehr; Tomas Kubart; Marika Edoff; Tobias Törndahl;

Using hydrogen‐doped In2O3 films as a transparent back contact in (Ag,Cu)(In,Ga)Se2 solar cells

Abstract

AbstractThis study evaluates the potential of hydrogen‐doped In2O3 (IOH) as a transparent back contact material in (Agy,Cu1‐y)(In1‐x,Gax)Se2 solar cells. It is found that the presence of Na promotes the creation of Ga2O3 at the back contact during (Agy,Cu1‐y)(In1‐x,Gax)Se2 growth. An excessive Ga2O3 formation results in a Ga depletion, which extends deep into the absorber layer. Consequently, the beneficial back surface field is removed and a detrimental reversed electrical field establishes. However, for more moderate Ga2O3 amounts (obtained with reduced Na supply), the back surface field can be preserved. Characterization of corresponding solar cells suggests the presence of an ohmic back contact, even at absorber deposition temperatures of 550°C. The best solar cell with an IOH back contact shows a fill factor of 74% and an efficiency (η) of 16.1% (without antireflection coating). The results indicate that Ga2O3 does not necessarily act as a transport barrier in the investigated system. Observed losses in open circuit voltage (VOC) as compared to reference samples with a Mo back contact are ascribed to a lower Na concentration in the absorber layer.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Top 10%
Top 10%
bronze
Related to Research communities
Energy Research