
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Deep surface Cu depletion induced by K in high‐efficiency Cu(In,Ga)Se2 solar cell absorbers

doi: 10.1002/pip.3010
AbstractIn this work, we used K‐rich glass substrates to provide potassium during the coevaporation of Cu(In,Ga)Se2 (CIGS) absorber layers. Subsequently, we applied a postdeposition treatment (PDT) using KF or RbF to some of the grown absorbers. It was found that the presence of K during the growth of the CIGS layer led to cell efficiencies beyond 17%, and the addition of a PDT pushed it beyond 18%. The major finding of this work is the observation of discontinuous 100‐ to 200‐nm‐deep Cu‐depleted patches in the vicinity of the CdS buffer layer, correlated with the presence of K during the growth of the absorber layer. The PDT had no influence on the formation of these patches. A second finding concerns the composition of the Cu‐depleted areas, where an anticorrelation between Cu and both In and K was measured using scanning transmission electron microscopy. Furthermore, a steeper Ga/(In+Ga) ratio gradient was measured for the absorbers grown with the presence of K, suggesting that K hinders the group III element interdiffusion. Finally, no Cd in‐diffusion to the CIGS layer could be detected. This indicates that if CdCu substitution occurs, either their concentration is below our instrumental detection limit or its presence is contained within the first 6 nm from the CdS/CIGS interface.
- Stockholm University Sweden
- Uppsala University Sweden
EELS, CIGS, solar cell, Annan materialteknik, Cu depletion, OVC, TEM, Other Materials Engineering, Energy Systems, Raman, Energisystem
EELS, CIGS, solar cell, Annan materialteknik, Cu depletion, OVC, TEM, Other Materials Engineering, Energy Systems, Raman, Energisystem
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).12 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
