
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
High‐quality amorphous silicon thin films for tunnel oxide passivating contacts deposited at over 150 nm/min

doi: 10.1002/pip.3333
AbstractHot‐wire chemical vapor deposition was utilized to develop rapidly grown and high‐quality phosphorus‐doped amorphous silicon (a‐Si:H) thin films for poly‐crystalline silicon on tunnel oxide carrier‐selective passivating contacts. Deposition rates higher than 150 nm/min were obtained for the in situ phosphorus‐doped a‐Si:H layers. To optimize the passivating contact performance, material properties such as microstructures as well as hydrogen content were characterized and analyzed for these phosphorus‐doped a‐Si:H films. The results show that a certain microstructure of the films is crucial for the passivation quality and the conductance of passivating contacts. Porous silicon layers were severely oxidized during high‐temperature crystallization, giving rise to very low conductance. The insufficient effective doping concentration in these layers also yields inferior passivation quality due to lack of field‐effect passivation. On the other hand, dense silicon layers are insensitive to oxidation but very sensitive to blistering of the films during the subsequent high‐temperature process steps. By optimizing the deposition parameters, a firing‐stable‐implied open‐circuit voltage of 737 mV and a contact resistivity of 10 mΩ·cm2were achieved at a high deposition rate of 100 nm/min while 733 mV and 90 mΩ·cm2were achieved at an even higher deposition rate of 150 nm/min.
- Helmholtz Association of German Research Centres Germany
- Sun Yat-sen University China (People's Republic of)
- International Solar Energy Research Center Konstanz Germany
- Guangzhou University China (People's Republic of)
- Sun Yat-sen University China (People's Republic of)
info:eu-repo/classification/ddc/690
info:eu-repo/classification/ddc/690
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
