Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Progress in Photovol...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Progress in Photovoltaics Research and Applications
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Progress in Photovoltaics Research and Applications
Article . 2020
License: CC BY
Data sources: KNAW Pure
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Innovative floating bifacial photovoltaic solutions for inland water areas

Authors: Hesan Ziar; Bjorn Prudon; Fen‐Yu (Vicky) Lin; Bart Roeffen; Dennis Heijkoop; Tim Stark; Sven Teurlincx; +8 Authors

Innovative floating bifacial photovoltaic solutions for inland water areas

Abstract

AbstractPhotovoltaic (PV) technology has the potential to be integrated on many surfaces in various environments, even on water. Modeling, design, and realization of a floating PV system have more challenges than conventional rooftop or freestanding PV system. In this work, we introduce two innovative concepts for floating bifacial PV systems, describing their modeling, design, and performance monitoring. The developed concepts are retractable and enable maximum energy production through tracking the Sun. Various floating PV systems (monofacial, bifacial with and without reflectors) with different tilts and tracking capabilities are installed on a Dutch pond and are being monitored. Results of the thermal study showed that partially soaking the frame of PV modules into water does not bring a considerable additional yield (+0.17%) and revealed that floating PV modules experience higher temperature special variance compared with land‐based systems. Observations showed that the birds' presence has a severe effect on floating PV performance in the short term. Electrical yield investigation concluded that due to low albedo of inland water areas (~6.5%), bifacial PV systems must have reflectors. One‐year monitoring showed that a bifacial PV system with reflector and horizontal tracking delivers ~17.3% more specific yield (up to 29% in a clear‐sky month) compared with a monofacial PV system installed on land. Ecological monitoring showed no discernable impacts on the water quality in weekly samplings but did show significant impacts on the aquatic plant biomass and periods of low oxygen concentrations.

Country
Netherlands
Keywords

690, partial water soaking, realization, onshore, photovoltaic (PV) module, floating PV (FPV), modeling, monitoring, international, island, ecology, bifacial PV, tracker, Plan_S-Compliant_TA, retractable, PV system

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    79
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 14
    download downloads 22
  • 14
    views
    22
    downloads
    Data sourceViewsDownloads
    TU Delft Repository1422
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
79
Top 1%
Top 10%
Top 1%
14
22
hybrid