Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Progress in Photovol...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Progress in Photovoltaics Research and Applications
Article . 2023 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
https://doi.org/10.22541/au.16...
Article . 2023 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Electron contact interlayers for low‐temperature‐processed crystalline silicon solar cells

Authors: Jesus Ibarra Michel; Anh Huy Tuan Le; Di Yan; Willem‐Jan Berghuis; Lars Korte; Anyao Liu; Sieu Pheng Phang; +5 Authors

Electron contact interlayers for low‐temperature‐processed crystalline silicon solar cells

Abstract

AbstractThis study focuses on electron‐selective passivating contacts for crystalline silicon (c‐Si) solar cells where an interlayer is used to provide a low contact resistivity between the c‐Si substrate and the metal electrode. These electron contact interlayers are used in combination with other passivating interlayers (e.g., a‐Si:H, TiOx, and Nb2O5) to improve surface passivation whilst still permitting contact resistivities suitable for high‐efficiency solar cells. We show that a wide variety of thermally evaporated materials, most of which have ionic character, enable an Ohmic contact between n‐type c‐Si and Al. From this pool of compounds, we observed that CsBr has especially promising behavior because of its excellent performance and thermal stability when combined with thin passivating layers. With different test structures, we were able to demonstrate low contact resistance using TiOx/CsBr, Nb2O5/CsBr, and a‐Si:H/CsBr stacks on n‐type c‐Si. The quality of the provided surface passivation depended on the stack but we achieved the best overall passivation stability with TiOx/CsBr. Finally, we were able to demonstrate an efficiency >20% on a laboratory‐scale solar cell that implements the TiOx/CsBr/Al stack as full‐area rear‐side electron selective contact.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
hybrid
Related to Research communities
Energy Research