Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Progress in Photovol...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Progress in Photovoltaics Research and Applications
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HZB Repository
Article . 2025
Data sources: HZB Repository
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effect of Ga Variation on the Bulk and Grain‐Boundary Properties of Cu(In,Ga)Se2 Absorbers in Thin‐Film Solar Cells and Their Impacts on Open‐Circuit Voltage Losses

Authors: Sinju Thomas; Wolfram Witte; Dimitrios Hariskos; Stefan Paetel; Chang‐Yun Song; Heiko Kempa; Matthias Maiberg; +2 Authors

Effect of Ga Variation on the Bulk and Grain‐Boundary Properties of Cu(In,Ga)Se2 Absorbers in Thin‐Film Solar Cells and Their Impacts on Open‐Circuit Voltage Losses

Abstract

ABSTRACTPolycrystalline widegap Cu(In,Ga)Se2 (CIGSe) absorbers for top cells in photovoltaic tandem devices can be synthesized via [Ga]/([Ga] + [In]) (GGI) ratios of > 0.5. However, the power conversion efficiencies of such high‐GGI devices are smaller than those of the record cells with GGI < 0.5. In the present work, the effects of the GGI ratio on various CIGSe material properties were studied and correlated with the radiative and nonradiative open‐circuit voltage (VOC) deficits of the thin‐film solar cells. Average grain sizes, grain boundary (GB) recombination velocities, fluctuations in luminescence energy distribution, barrier heights at GBs, effective electron lifetimes, and Urbach energies were investigated in five solar cells with GGI ratios from 0.13 to 0.83. It was found that the GGI variation affects GB recombination velocities, fluctuations in spatial luminescence distributions, the average grain size, the electron lifetime, and the Urbach energy. In contrast, the detected ranges of barrier heights at GBs are independent of the GGI ratio. Mainly Ga/In gradients give rise to substantial radiative VOC losses in all solar cells. Nonradiative VOC deficits are dominant especially for solar cells with GGI > 0.5, which can be attributed to low bulk lifetimes and enhanced recombination at GBs in CIGSe absorbers in this compositional range.

Country
Germany
Keywords

Cu In,Ga Se 2 absorbers ; electron lifetime ; Ga variation ; grain boundaries ; open circuit voltage losses ; thin film solar cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
hybrid
Related to Research communities
Energy Research