Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Progress in Photovol...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Progress in Photovoltaics Research and Applications
Article . 2008 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thermal oxidation for crystalline silicon solar cells exceeding 19% efficiency applying industrially feasible process technology

Authors: Schultz, Oliver; Mette, Ansgar; Hermle, Martin; Glunz, Stefan;

Thermal oxidation for crystalline silicon solar cells exceeding 19% efficiency applying industrially feasible process technology

Abstract

AbstractThermal oxides are commonly used for the surface passivation of high‐efficiency silicon solar cells from mono‐ and multicrystalline silicon and have led to the highest conversion efficiencies reported so far. In order to improve the cost‐effectiveness of the oxidation process, a wet oxidation in steam ambience is applied and experimentally compared to a standard dry oxidation. The processes yield identical physical properties of the oxide. The front contact is created using a screen‐printing process of a hotmelt silver paste in combination with light‐induced silver plating. The contact formation on the front requires a short high‐temperature firing process, therefore the thermal stability of the rear surface passivation is very important. The surface recombination velocity of the fired oxide is experimentally determined to be below S ≤ 38 cm/s after annealing with a thin layer of evaporated aluminium on top. Monocrystalline solar cells are produced and 19·3% efficiency is obtained as best value on 4 cm2 cell area. Simulations show the potential of the developed process to approach 20% efficiency. Copyright © 2008 John Wiley & Sons, Ltd.

Country
Germany
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    66
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
66
Top 10%
Top 10%
Top 10%
bronze