Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Progress in Photovol...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Progress in Photovoltaics Research and Applications
Article . 2008 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Material development for dye solar modules: results from an integrated approach

Authors: Hinsch, A.; Behrens, S.; Berginc, M.; Bönnemann, H.; Brandt, H.; Drewitz, A.; Einsele, F.; +23 Authors

Material development for dye solar modules: results from an integrated approach

Abstract

AbstractIn this paper, we report on the outcome of a German network project conducted with 12 partners from universities and research institutes on the material development of dye solar cells (DSC). We give an overview in the field and evaluate the concept of monolithic DSC further with respect to upscaling and producibility on glass substrates. We have developed a manufacturing process for monolithic DSC modules which is entirely based on screen printing. Similar to our previous experience gained in the sealing of standard DSC, the encapsulation of the modules is achieved in a fusing step by soldering of glass frit layers. For use in monolithic DSC, a platinum free, conductive counter electrode layer, showing a charge transfer resistance of RCT < 1·5 Ω cm2, has been realized by firing a graphite/carbon black composite under an inert atmosphere. Glass frit sealed monolithic test cells have been prepared using this platinum‐free material. A solar efficiency of 6% on a 2·0 cm2 active cell area has been achieved in this case. Various types of non‐volatile imidazolium‐based binary ionic liquid electrolytes have been synthesized and optimized with respect to diffusion‐limited currents and charge transfer resistances in DSC. In addition, quasi‐solid‐state electrolytes have been successfully tested by applying inorganic (SiO2) physical gelators. For the use in semi‐transparent DSC modules, a polyol process has been developed which resulted in the preparation of screen printed, transparent catalytic platinum layers showing an extremely low charge transfer resistance (0·25 Ω cm2). Copyright © 2008 John Wiley & Sons, Ltd.

Country
Germany
Keywords

Chemical engineering, info:eu-repo/classification/ddc/660, 660, ddc:660

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    61
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
61
Top 10%
Top 10%
Top 10%
Related to Research communities
Energy Research