Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Publications Open Re...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
physica status solidi (RRL) - Rapid Research Letters
Article . 2024 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Systematic Investigation on the Surfactant‐Assisted Liquid‐Phase Exfoliation of MoS2 and WS2 in Water for Sustainable 2D Material Inks

Authors: Pozzati, Micaela; Boll, Felix; Crisci, Matteo; Domenici, Sara; Smarsly, Bernd; Gatti, Teresa; Wang, Mengjiao;

Systematic Investigation on the Surfactant‐Assisted Liquid‐Phase Exfoliation of MoS2 and WS2 in Water for Sustainable 2D Material Inks

Abstract

MoS2 and WS2 have gathered significant attention due to their tunable properties and wide range of applications. Liquid‐phase exfoliation (LPE) is a facile method to prepare 2D MoS2 and WS2. Currently, the principally employed solvents for LPE of MoS2 and WS2 are expensive and toxic, and have high boiling points. These drawbacks encourage to find more sustainable alternatives to the liquid medium used for the preparation of 2D material inks. Water is the best option, but surfactants are necessary for LPE in water, since MoS2 and WS2 are hydrophobic. Organic molecules with amphoteric character such as sodium dodecyl sulfate, sodium dodecylbenzene sulfonate, and sodium hexadecyl sulfonate (SHS) are selected as suitable candidates for the role. However, the study of these surfactants used in LPE is barely systematically reported. In this work, a detailed investigation is presented on their impact on the LPE of MoS2 and WS2, which are representatives of transition‐metal dichalcogenides. By characterizing and qualifying the products from average number of layers, it is found that all the surfactants work efficiently to exfoliate MoS2 and WS2 into few layers, and SHS stabilizes the 2D layers better than the other two. However, in terms of yield and relative surfactant concentration, a real trade‐off is not identified between maximized quantity of exfoliated materials and minimized surfactant concentration, which prompts to select the colloidal ink based on the specific further needs for processing.

Country
Italy
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
hybrid
Related to Research communities
Energy Research