Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Rapid Communications...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Rapid Communications in Mass Spectrometry
Article . 2008 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CNR ExploRA
Article . 2008
Data sources: CNR ExploRA
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Analysis of polycyclic aromatic hydrocarbon sequences in a premixed laminar flame by on‐line time‐of‐flight mass spectrometry

Authors: Barbara Apicella; Marina Panariello; Anna Ciajolo; Nicola Spinelli; Mario Armenante; Annalisa Bruno;

Analysis of polycyclic aromatic hydrocarbon sequences in a premixed laminar flame by on‐line time‐of‐flight mass spectrometry

Abstract

AbstractA time‐of‐flight mass spectrometer in reflectron configuration has been used for the real‐time detection of combustion products. The products of a premixed laminar C2H4/O2 flame at atmospheric pressure were sampled along its axis, diluted with inert gas and carried to the ion source as a molecular beam under minimal perturbation. Electron ionization and different optical ionization sources are compared. Photoionization was achieved with laser radiation from a Nd:YAG nanosecond pulsed laser at two different wavelengths in the UV range (266 and 355 nm). The mass spectra obtained using laser wavelength of 355 nm and electron ionization present a series of ions regularly spaced by 18 m/z units up to m/z 2000. This series allowed precise calibration of the instrument for compounds of high molecular weight. Information on the chemical nature of the analyzed species has been obtained by comparing mass spectra produced with different ionization methods. In order to better understand the growth mechanisms, polycyclic aromatic hydrocarbon sequences have been analyzed by fast Fourier transform of the mass spectra. Copyright © 2008 John Wiley & Sons, Ltd.

Country
Italy
Keywords

COMBUSTION, CHARGED-PARTICLES, SOOTING FLAMES, ATMOSPHERIC-PRESSURE, PAH

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Top 10%
Top 10%
bronze