Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ChemistrySelectarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ChemistrySelect
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ChemistrySelect
Article . 2020 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Electrochemical Fabrication of Ternary Black Ti‐Mo‐Ni Oxide Nanotube Arrays for Enhanced Photoelectrochemical Water Oxidation

Authors: Marie-Paule Delplancke; Nageh K. Allam; Nourhan M. Deyab; Nourhan M. Deyab; Patrick Steegstra; Annick Hubin; Kholoud E. Salem; +3 Authors

Electrochemical Fabrication of Ternary Black Ti‐Mo‐Ni Oxide Nanotube Arrays for Enhanced Photoelectrochemical Water Oxidation

Abstract

AbstractPoint defects play important and crucial roles in the design of high performance photocatalysts. We report on the electrochemical fabrication of black Ti−Mo‐Ni−O nanotubes as a promising electrode material for solar‐assisted water splitting. The ternary Ti−Mo‐Ni−O catalyst was annealed in hydrogen atmosphere to induce point defects in the material to enhance its conductivity, charge carriers density, and performance. The effect of annealing duration on the performance of ternary Ti−Mo‐Ni−O nanotube films was investigated. The hydrogen‐annealed nanotubes showed enhanced optical characteristics in the visible spectrum, which can be related to the formation of defect states upon hydrogen annealing. The 10 h‐annealed sample showed an exceptionally enhanced photocurrent density of ∼10 mA/cm2 with a remarkable open‐circuit voltage of ∼−1.0 VAg/AgCl under AM 1.5G illumination. This improved photocurrent is in agreement with the obtained 75 % incident‐photon‐to‐current‐conversion‐efficiency (IPCE), confirming the improved photoactivity of the hydrogen‐treated mixed oxide nanotubes.

Country
Belgium
Keywords

water splitting, oxygen vacancies, solar energy conversion, photoelectrochemical cell, ternary photocatalyst

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
bronze
Related to Research communities
Energy Research