
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Antimony‐Bismuth Alloying: The Key to a Major Boost in the Efficiency of Lead‐Free Perovskite‐Inspired Photovoltaics

AbstractThe perovskite‐inspired Cu2AgBiI6 (CABI) material has been gaining increasing momentum as photovoltaic (PV) absorber due to its low toxicity, intrinsic air stability, direct bandgap, and a high absorption coefficient in the range of 105 cm−1. However, the power conversion efficiency (PCE) of existing CABI‐based PVs is still seriously constrained by the presence of both intrinsic and surface defects. Herein, antimony (III) (Sb3+) is introduced into the octahedral lattice sites of the CABI structure, leading to CABI‐Sb with larger crystalline domains than CABI. The alloying of Sb3+ with bismuth (III) (Bi3+) induces changes in the local structural symmetry that dramatically increase the formation energy of intrinsic defects. Light‐intensity dependence and electron impedance spectroscopic studies show reduced trap‐assisted recombination in the CABI‐Sb PV devices. CABI‐Sb solar cells feature a nearly 40% PCE enhancement (from 1.31% to 1.82%) with respect to the CABI devices mainly due to improvement in short‐circuit current density. This work will promote future compositional design studies to enhance the intrinsic defect tolerance of next‐generation wide‐bandgap absorbers for high‐performance and stable PVs.
- University Federico II of Naples Italy
- Tampere University Finland
- Hanyang University Korea (Republic of)
- University of Seoul
- Hanyang University Korea (Republic of)
defects; low-toxicity; perovskite-inspired material; photovoltaics; wide-bandgap, photovoltaics, 216 Materials engineering, perovskite-inspired material, low-toxicity, 216, 540, 114 Physical sciences, defects, wide-bandgap, 114, 620
defects; low-toxicity; perovskite-inspired material; photovoltaics; wide-bandgap, photovoltaics, 216 Materials engineering, perovskite-inspired material, low-toxicity, 216, 540, 114 Physical sciences, defects, wide-bandgap, 114, 620
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).26 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
