
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Pickering Emulsion Templated 3D Cylindrical Open Porous Aerogel for Highly Efficient Solar Steam Generation

AbstractPorous‐structured evaporators have been fabricated for achieving a high clean water throughput due to their maximized surface area. However, most of the evaporation surfaces in the porous structure are not active because of the trapped vapor in pores. Herein, a three‐dimensional (3D) cylindrical aerogel‐based photothermal evaporator with a disordered interconnected hierarchical porous structure is developed via a Pickering emulsion‐involved polymerization method. The obtained cotton cellulose/aramid nanofibers/polypyrrole (CAP) aerogel‐based evaporator achieved all‐cold evaporation under 1.0 sun irradiation, which not only completely eliminated energy loss via radiation, convection, and conduction, but also harvested massive extra energy from the surrounding environment and bulk water, thus significantly increasing the total energy input for vapor generation to deliver an extremely high evaporation rate of 5.368 kg m−2 h−1. In addition, with the external convective flow, solar steam generation over the evaporator can be dramatically enhanced due to fast vapor diffusion out of its unique opened porous structure, realizing an ultrahigh evaporation rate of 18.539 kg m−2 h−1 under 1.0 sun and 4.0 m s−1. Moreover, this evaporator can continuously operate with concentrated salt solution (20 wt.% NaCl). This work advances rational design and construction of solar evaporator to promote the application of solar evaporation technology in freshwater production.
- University of South Australia Australia
- Wuhan Textile University China (People's Republic of)
- University of South Australia Australia
energy management, photothermal conversion, porous structures, cold evaporation, solar vapor generation
energy management, photothermal conversion, porous structures, cold evaporation, solar vapor generation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).35 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
