Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Small Methodsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Small Methods
Article . 2023 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Small Methods
Article . 2023
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

High‐Entropy Perovskites for Energy Conversion and Storage: Design, Synthesis, and Potential Applications

Authors: Yuhao Wang; Jiapeng Liu; Yufei Song; Jing Yu; Yunfeng Tian; Matthew James Robson; Jian Wang; +8 Authors

High‐Entropy Perovskites for Energy Conversion and Storage: Design, Synthesis, and Potential Applications

Abstract

AbstractPerovskites have shown tremendous promise as functional materials for several energy conversion and storage technologies, including rechargeable batteries, (electro)catalysts, fuel cells, and solar cells. Due to their excellent operational stability and performance, high‐entropy perovskites (HEPs) have emerged as a new type of perovskite framework. Herein, this work reviews the recent progress in the development of HEPs, including synthesis methods and applications. Effective strategies for the design of HEPs through atomistic computations are also surveyed. Finally, an outlook of this field provides guidance for the development of new and improved HEPs.

Country
China (People's Republic of)
Related Organizations
Keywords

Computational understanding, Energy storage, Synthetic methods, Applications, Energy conversion, High-entropy perovskites

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Top 10%
Top 1%
Related to Research communities
Energy Research