
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Offshore wind resource estimation from satellite SAR wind field maps

doi: 10.1002/we.150
A wind resource estimation study based on a series of 62 satellite wind field maps is presented. The maps were retrieved from imaging synthetic aperture radar (SAR) data. The wind field maps were used as input to the software RWT, which calculates the offshore wind resource based on spatial averaging (footprint modelling) of the wind statistic in each satellite image. The calculated statistics can then be input to the program WAsP and used in lieu of in-situ observations by meteorological instruments. A regional wind climate map based on satellite SAR images delineates significant spatial wind speed variations. The site of investigation was Horns Rev in the North Sea, where a meteorological time series is used for comparison. The advantages and limitations of these new techniques, which seem particularly useful for mapping of the regional wind climate, are discussed. Copyright © 2005 John Wiley & Sons, Ltd.
- DePaul University United States
- United States Department of Energy United States
- Nansen Environmental and remote sensing center Norway
- United States Department of Energy United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).49 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
