Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Wind Energyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Wind Energy
Article . 2013 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
eResearch@Ozyegin
Article . 2013
Data sources: eResearch@Ozyegin
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A torque matched aerodynamic performance analysis method for the horizontal axis wind turbines

Authors: Horst Weber; Ali Al-Abadi; Ali Al-Abadi; Özgür Ertunç; Antonio Delgado;

A torque matched aerodynamic performance analysis method for the horizontal axis wind turbines

Abstract

AbstractAn analysis method is developed to test the operational performance of a horizontal axis wind turbines. The rotor is constrained to the torque–speed characteristic of the coupled generator. Therefore, the operational conditions are realized by matching the torque generated by the turbine over a selected range of incoming wind velocity to that needed to rotate the generator. The backbone of the analysis method is a combination of Schmitz' and blade element momentum (BEM) theories. The torque matching is achieved by gradient‐based optimization method, which finds correct wind speed at a given rotational speed of the rotor. The combination of Schmitz and BEM serves to exclude the BEM iterations for the calculation of interference factors. Instead, the relative angle is found iteratively along the span. The profile and tip losses, which are empirical, are included in the analysis. Hence, the torque at a given wind speed and rotational speed can be calculated by integrating semi‐analytical equations along the blade span. The torque calculation method is computationally cheap and therefore allows many iterations needed during torque matching. The developed analysis method is verified experimentally by testing the output power and rotational speed of an existing wind turbine model in the wind tunnel. The generator's torque rotational speed characteristic is found by a separate experimental set‐up. Comparison of experiments with the results of the analysis method shows a good agreement. Copyright © 2013 John Wiley & Sons, Ltd.

Country
Turkey
Keywords

Optimization, Power coefficient and performance measurements, Horizontal axis wind turbine, Schmitz' theory, BEM theory

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Average
gold