
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Cost performance and risk in the construction of offshore and onshore wind farms

doi: 10.1002/we.2069
This article investigates the risk of cost overruns and underruns occurring in the construction of 51 onshore and offshore wind farms commissioned between 2000 and 2015 in 13 countries. In total, these projects required about $39 billion in investment and reached about 11 GW of installed capacity. We use this original dataset to test six hypotheses about construction cost overruns related to (i) technological learning, (ii) fiscal control, (iii) economies of scale, (iv) configuration, (v) regulation and markets and (vi) manufacturing experience. We find that across the entire dataset, the mean cost escalation per project is 6.5% or about $63 million per windfarm, although 20 projects within the sample (39%) did not exhibit cost overruns. The majority of onshore wind farms exhibit cost underruns while for offshore wind farms the results have a larger spread. Interestingly, no significant relationship exists between the size (in total MWor per individual turbine capacity) of a windfarm and the severity of a cost overrun. Nonetheless, there is an indication that the risk increases for larger wind farms at greater distances offshore using new types of turbines and foundations. Overall, the mean cost escalation for onshore projects is 1.7% and 9.6% for offshore projects, amounts much lower than those for other energy infrastructure.
- University of Sussex United Kingdom
- Cornell University United States
- New York University United States
- Aarhus University Denmark
- Chalmers University of Technology Sweden
energy and finance, construction cost overrun, wind energy, wind power
energy and finance, construction cost overrun, wind energy, wind power
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).47 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
